
Design Studio 2 (part 2)
Team 15 Design Studio 2-1 (ZotFeeds)

1. Audience and other stakeholders:
○ Audience:

○ Irvine Residents:
■ Individuals and residents of Irvine will operate the application on

their local device and create/log in to a food donor account to
request food pick up from a nonprofit organization.

○ UCI Dining Services:
■ A big source of food waste from Irvine comes from UCI dining

services. Instead of throwing away excess food, they can feed
many other residents of Irvine as well.

○ Nonprofits that will organize the reception of the food:
■ These are the organizations that look to supply themselves with

food to give for free for individuals who need it. All the food
processed through the app will be distributed to the varying
organizations’ food is food drive signed up.

○ Irvine Restaurants:
■ Restaurants are a major supplier for food banks, they will be able

to donate their excess food through the app.
○ Food Donors:

■ Any individual who would casually donate their excess food
through the app.

○ Irvine Grocery Stores:
■ Grocery Stores are responsible for a big percentage of food waste.

The app will allow them to donate their excess food.
○ Stakeholders:

○ Food banks:
■ The food banks in Irvine would be affected and would benefit

greatly by knowing of the availability of food that the application
provides.

○ The city of Irvine:
■ The city of Irvine will be affected by the application because it will

bring new ideas to combat food insecurity.
○ Homeless People:

■ This application will increase food donations to non-profit
organizations and local food banks, therefore, increasing the food
supply for the homeless who benefit from these organizations.

○ Irvine Recycling and Waste services:
■ The city of Irvine can be directly affected by the reduction of solid

waste such as trash, litter, and garbage items. Due to the reduction
of waste, Irvine as a city will experience less pollution in their

local environments and diminish the workload on these types of
services.

○ Environment:
■ The environment as a whole would greatly benefit from less food

waste as a result of the software’s goal to reduce food waste in
Irvine.

○ The software developers:
■ The software developers are responsible for creating the software

and helping with the design.
○ The software maintainers :

■ The people responsible for maintaining the software would have an
effect on the future and current development and maintenance of
the software and in turn, would affect the design of the software.

2. Goals, constraints, assumptions for the overall design solution
○ Goals:

○ Reduce the levels of malnutrition within the Irvine Community.
■ The application will help reduce hunger and malnutrition in the

Irvine community by increasing donations to food banks and other
non-profit organizations that combat this issue.

○ Reduce food and other disposable waste within Irvine Community.
■ The app will take in requests from food donors. This food will be

distributed to nonprofit organizations, thus reducing food waste.
○ The software shall provide good usability.

■ The app will have an intuitive and accessible interface for all users
of the app.

○ Speed up the process of the retrieval and delivery of the food to people in
need.

■ Connects sources of food to the people that are going to deliver the
food together to ensure that everything gets set up faster so the
food will get to the people that need it as quickly as possible.

○ Make the process easier for the non-profit organization to collect, process,
and distribute donations.

■ With features like direct communication, pickup and delivery
confirmations, and estimated arrival times, donation collection and
distribution by the non-profit organization will be much more
intuitive and efficient.

○ Make the process easier for donors to get rid of their excess food.
■ Traditionally, donors wanting to donate food would need to search

for non-profit organizations in their area, get in touch with them,
and figure out how/ when/ where to deliver the food. With the app,
donors can simply request for food to be picked up and the
accepting organization will handle pick-up.

○ The application shall be accessible via different smartphones.

■ Focusing on mobile devices, the app should be downloadable from
the Apple and Android app stores so we can reach a wider
audience.

○ Ensure the excess food will go to a legitimate and professional nonprofit
organization that will deliver to people in need.

■ The application aims to ensure the safe and correct delivery of
food to its rightful recipients, who are people who know where to
give the food to people in need.

○ Assumptions:
○ All Nonprofit organizations will have access to the internet and the

software.
■ For the organizations to use or download the application, they will

need to have internet access.
○ There will always be a need for food.

■ Food is a daily necessity for non-profit organizations. This will
mean all food put up for pickup by donors will have a match ready
and willing to accept it.

○ All donors will have access to the internet and the software.
■ The donors will need to have internet access to use and download

the application.
○ Assume both organizations and food donors will input correct information

when submitting a request.
■ If the correct information is given, it reduces the time and effort

that the system must do to make changes to those human errors.
○ The organization will be in charge of picking up the food.

■ The app will only focus on connecting the parties, the pickup of
the food will be organized by the non-profit organizations.

○ The application will benefit and be used mostly by non-profit
organizations

■ With non-profits as the main user, the application will be designed
to adhere to that statement.

○ The application is an open-source project, but we shall be able to control
and define how the project should be developed.

■ There is a need for restrictions on the project to complete and
satisfy the goals of the group. By making this assumption our
group will be able to define features for our system.

○ Constraints:
○ The application can’t always guarantee the request of providing food to

the nonprofit organizations
■ Due to the limited supply of extra food, the need for food cannot

always be fulfilled especially when the demand is higher than the
supply.

○ Individuals can not put in a request for food, only non-profit
organizations.

■ Requests are exclusive to non-profit organizations because they are
the main distributors of donations to those affected by food
insecurity.

○ Non-profit organizations can not request again until their current order is
fulfilled.

■ This will ensure those who are in the queue will also be considered
for the donations accordingly.

○ There will be no budget for designing this application.
■ As this project is done as charitable work to help address an

important societal problem, it will not be funded by anyone and the
software developers and maintainers will have to work voluntarily.

○ The project completion date is due by Fall 2021.
■ As this project is done as charitable work to help address an

important societal problem, launching it as soon as Fall 2021
would be a tight timeline to work through.

○ The software is an open-source project and is reliant on community
developers to contribute to it.

■ The software development will need developers, if there are not
enough contributors the project will not be able to be completed by
the projected completion date.

3. Main design
○ Application Design:

○ The application shall require a signup process for two different users with
different functionalities for each.

■ The application will have two types of users, the food donor user
and the non-profit organization manager user, each with different
functionalities.

○ The application shall allow the food donor user to put in a request for the
pickup of the excess food and input the information regarding the food.

■ When the food donor puts in the request they must input the
information regarding the food which includes: the amount of food
(estimate of the number of people the food is available for), the
type of food, how long the food will be good for (an expiration
date), and the location of the pickup of food. All information
regarding the food will be inputted when the food donor requests
the pickup for food.

○ The application shall allow the nonprofit manager user to request food and
get notified when a food pickup request matches their food request.

■ When the nonprofit manager puts in the request for food, they must
input information regarding the request such as how much food is
need (estimate of how many people need the food) and they must
choose the level of urgency for the request; low being that the
nonprofit has other options and resources (other than the
application) to request food from and high being that the
application is the last resort.

○ The application shall contain a priority system that will determine who
gets food first based on need.

■ Many factors make your request more important than other
organizations like how many other sources of food they have and
how many people they are projected to feed. The level of urgency
will help determine where the food goes.

○ The application shall allow both non-profit manager types and food donor
types to contact each other via a phone/contact number.

■ Both users will have provided their phone/contact number to
communicate with one another through the food delivery process
in case of any miscommunication or misinformation of the
requests.

○ The application shall have a matching feature between food donors and
nonprofit organizations.

■ Food donors and nonprofit organizations shall be matched so that a
communication and acceptance process can proceed forward
between the two groups.

○ The application shall have a verification process for nonprofit
organizations to solidify legitimacy.

■ The nonprofit organizations need to be verified to ensure that food
is being delivered to a proper location and that the system is not
being taken advantage of.

○ The request by non-profits and food donors shall have the option to be
canceled whenever necessary.

■ Nonprofit organizations will have the option to cancel their request
at any time. The application shall notify the donor if the request is
canceled.

■ Food donors will have the option to cancel their donation before it
gets matched by the algorithm.

○ The application shall record/keep track of the current request of a
Nonprofit organization, and ensure that it has no more than one request.

■ There should be only one request per nonprofit organization so that
the software will not be overloaded

■ Anyone organization shall not be able to request all the available
food and therefore take all the resources.

○ The application shall allow the nonprofit organization manager to enter the
estimated time of pickup for the food donor to expect.

■ After being matched, the nonprofit organization manager should
notify the food donor of the estimated time of pickup that they will
arrange for the food after using the location to estimate it. If any
updates, the food donors’ contact information shall be available to
the organization.

○ Interaction Design:
○ The application shall have two user signup (“Food Donor” or a “Nonprofit

Manager”) options that they can choose from at the homepage.
■ Due to the different functionalities of the two users, the user log-in

will determine the different homepages and operations that are
available to each.

■ When the “Food Donor” is chosen, the application shall present the
user text boxes to fill out their name, phone number, and email
address.

■ When the “Nonprofit Manager” is chosen, the application shall ask
the user for the same information for “Food Donor”, and will also
ask for the nonprofit organization the user is working for and it
will go through the verification process that is required of the
nonprofit.

■ If the user already has an account, they can click the login button
instead of signing up again, where they will be able to choose
whether they are a food donor or a nonprofit manager. They will be
able to log in with their account information that they used when
they first signed up with.

○ When a “Food Donor” user logs in, they will see a button to request for
pickup of excess food.

■ On the homepage, there will be a button, “Pickup Request,” that
users can click to look for a request. The button will open a
different page to fill up the request information.

■ The pickup request will show a questionnaire to be filled.
■ The request will be added to the home page with a status label

(pending or accepted).
○ When a “Nonprofit Manager” user logs in, they will be able to request to

pick up food.
■ On the homepage, there will be a button, “Food Request,” that

users can click to look for a request that best fits their needs. The
button will open a different page to fill up the request information.

■ The food request will show a questionnaire to be filled.
■ The level of urgency they need the food for will be a dropdown

menu with the options: (low, medium, high) (low if they have other
resources to get the food from others, high if they do not).

○ Donors can fill out how fresh the food they are donating is through a
calendar system.

■ The donors will be able to choose a date on the calendar that shows
when their food will expire.

■ Based on what date the donors choose, if the food will expire too
soon, then their request to get their food picked up cannot be
processed.

○ Once a match has been found between a food donor and a nonprofit
organization, both parties will receive a notification on their device.

■ The notification text for food donors will say that they have found
a nonprofit organization that will come pick up your food.

■ The notification will only appear for nonprofit managers once the
food donor has filled out the location of where they want their food
to be picked up. The notification text will contain the food donor’s
location.

■ Both users can click on the notification and they will be sent into
the app to view the match.

■ The nonprofit manager will be able to view the location of the food
donor so that they know where they are supposed to go to pick up
the food.

■ The nonprofit manager will be prompted to send the food donor
the estimated time of pickup for them to see.

■ The food donor will be able to view the estimated time it takes for
the nonprofit to reach them.

○ Users can use the “Cancel” button to cancel their requests.
■ This button will only allow canceling the donation or the request

depending on the user. Food donors can cancel before their request
gets matched (changes from pending to accepted). Nonprofit
Managers will be able to click the Cancel Button always.

○ Food donors and nonprofit managers can view their past transactions
through the dropdown menu of the application homepage.

■ Food donors can click the dropdown menu and see all the past
transactions they had picked up. They can see the date and time of
when their food got picked up and what food they donated.

■ Nonprofit managers can click the dropdown menu and view all the
past transactions they picked up. They can view when and where
they picked up the food from and also what food the transaction
contained.

4. Architecture Design:
○ The application will follow a server-client architecture design, where the client

will alternate between the food donor user and the nonprofit organization user.
○ The server will provide services, where the food donor requests food

pickup, the server, in this case, is the nonprofit, will provide the food
donor with the service of sending someone to pick up the food and vice
versa in the case that the nonprofit puts in the request for food.

○ The application will incorporate an algorithm that determines who receives food
first based on an importance level standardized by our system.

○ The application will review and read the request for food by nonprofits,
taking information such as priority/urgency level and how many requests
the non-profit has made. Based on these numbers the algorithm will sort
the virtual queue by greatest need.

○ The application shall use a database that holds two types of accounts, food donors
and nonprofit organizations.

○ The database is necessary to remember users who want to frequently
donate food and to ensure that nonprofit accounts are verified and
legitimate organizations. This database will also hold necessary
information about each account which will help when submitting requests
for food or food pickup.

○ The application shall use an array within the user class that holds all
current/active requests for that user.

○ The requests for the user are stored in an array. The virtual queue will get
a reference to each new request for easy access and update.

○ The array remembers all completed requests to maintain a history that will
be used to display requests by a user and is account-linked so that an
individual can view and monitor their previous actions.

○ The application shall make use of a virtual queue for nonprofit requests that are
sorted by their urgency, number of individuals in need of food, and time
submitted.

○ The virtual queue is an important element in distributing food equally and
efficiently. By creating a virtual queue that holds requests in a specific
sorted order from the database, there will always be a current request in
need so long as the database for the current request is not empty.

○ The application will create a new class object for each request, both from food
donors and nonprofit organizations, which will hold the specific parameters
needed for it to be created.

○ Upon a user submitting a request for food or a request for food to be
picked up, it will create a new request class object for that submission
which will be stored and saved into the array of the user class holding all
current and active requests. Non-profit requests will be sent to the Sorted
virtual queue while the food donors’ requests will be sent to the Food
request queue.

○ The application shall only allow one request from each organization on the virtual
queue.

○ Upon submission of a request, the software shall search through the
database of current/active requests checking for any request class object
that has the same class object name. The class object name is determined
upon the creation of one’s account, and that name will be used throughout
the database whenever a new object from that user is created.

○ The application will use a matching algorithm to connect food donors to nonprofit
organizations.

○ Using the database that holds both requests by food donors and nonprofits,
it will search and find the best match based on the amount of food that can
be donated, the amount of food requested, and use of the virtual queue of
the next nonprofit available to receive food.

○ The application shall make use of a verification process to ensure that receivers of
food are legitimate nonprofit organizations.

○ Upon creating an account for nonprofit organizations, the verification
process will make use of the Charity Directory of Irvine website. This
process will ensure that the information input matches with and goes
beyond public viewable material to promise donors that their food is being
sent to professional systems.

○ The application will use the React Native framework to implement the application
to be available on both IOS and Android application stores.

○ ZotFeeds will solely be a mobile application that is available on both IOS
and Android mobile devices. The user will be able to perform all
functionalities and use of the software system on the ZotFeeds mobile
application.

The section below describes the different artifacts used in the architecture design of ZotFeeds.
The artifacts are the framework used, database architecture, client-server architecture,
object-oriented architecture design, the system’s data flow, and the two major concepts used to
make the system work which are the virtual queue and the matching algorithm.

Framework:

We decided to use React Native as the framework for the following reasons:

● React Native uses javascript which is a language most of us are familiar with.
● React Native is open source which gives us more tools available and third-party features

to build the application faster and efficiently.
● Similar apps using React Native: UberEats, Instagram, skype.
● React Native is cross-platform. This means we only need to have one base code for IOS

and Android. It helps reduce development time and spending. It also increases the
audience reached to multiple platforms.

● React Native makes it easy to maintain apps. It has a sync update feature that should
update the code for patches and updates within minutes to the source code.

● The available screen containers in React Native are ones that are adequate for ZotFeeds
as it contains features such as the sign-in containers, verification page and order
container.

Database Architecture:

Database description:
This database follows a key-value format where the key will be the name and the value

will be a class object either a Nonprofit Organization or Food Donor. This will be used for the
authentication of a user when they try to log in. When new users sign in, the database will be
updated to have the new user inserted in the database. The user class will have access to an array
of all requests the user has made, this will not be part of the database but rather referenced by the
user class.

Client-Server Architecture:

Client-Server description:

ZotFeeds will follow a client-server architecture that will provide services and functionalities for
its users based on the account type when logged into the application, food donors, or nonprofit
organizations. The client-server follows a TCP connection meaning that the data that is requested
and received is passed through five layers: application layer, transport layer, network layer, link
layer, and physical layer. These five layers work together in breaking data down into segments,
transporting and routing them to their source destination, and putting the segments back together
before arrival to the source destination. To generalize this, users will communicate with the
ZotFeeds server host to be able to receive the proper data requested. From this point, users will
be able to view and interact with what is displayed on their device

Object-Oriented Architecture Design:

Object-Oriented Architecture Design Description:

The UML Class Diagram has Non-Profit Manager and Food Donor as the two main actors of the
system. They can view a database that stores the history of past transactions that they have made,
make their appropriate requests, and pick up/prepare food. Once either actor has made a request,
their request will go into their respective queue system. The virtual queue for the NonProfit

requests will automatically sort the requests by priority, number of requests, and date and time
respectively. The Food Donor queue system will just append the requests to the end of the queue.
Then, the matching algorithm will take the first request from each queue and try to find the best
match possible.

System Data Flow:

Data flow description:
The data flow structure describes the process and the flow of data that both a food donor or
nonprofit organization will follow when opening and using the ZotFeeds application. The user
will begin by selecting the type of account that they already have or that they want to be created.
From there users can either select to sign in if an account exists or create an account filled with
the necessary information to the selected account type. Upon finishing the sign-up process or
sign-in process the user will be directed to their selected account type’s home directory page.
Food donors shall be able to submit requests for food pick and nonprofits shall be able to submit
requests for food. Both types of accounts are able to view their completed request through a
history query, however, viewing their active request differs slightly. Food donors will be able to

view the estimated time of arrival and confirm the pickup when completed, while nonprofits can
update their estimated time of arrival and confirm when the delivery for food has been picked up.

Sorted Virtual Queue:
As stated above the application shall make use of a virtual queue for nonprofit requests that are
sorted by their urgency, number of individuals in need of food, and time submitted. This linked
list will store the nonprofit requests and sort them based on the following factors: Highest
Priority (high, medium, low), Least number of requests, and Earliest Timestamp. The highest
priority goes first on the queue (closest to the head), if the same priority, then the least number of
requests goes first, if they share the same number, then the oldest timestamp goes first. A
function will be called when the nonprofit user makes a request. This function will send a linked
list node with a reference to the request to be added into the sorted Virtual Queue.

Virtual Queue Pseudocode:

LL = Linked list storing the sorted nonprofit food request item

Item = nonprofit food request item incoming

Current = current item in the LL

While Item has not been inserted:

#check priority

If item’s priority level is greater than

the current’s priority level do:

Insert item node in front current node.

Elif item’s priority level is equal to the current’s
priority level do:

#check number of request

If the item number request is less than the current’s

number request do:

Insert item node in front of current node.

Elif the item number request is equal to the current

number request do:

#check timestamp

If the item’s timestamp is earlier than the
current’s timestamp do:

Insert item node in front of current node.

Else:

Iterate to the next node, set current to the
next node.

Else: (greater than)

Iterate to the next node, set current to the next
node.

Else (less than):

Iterate to the next node, set current to the next
node.

Virtual Queue Pseudocode Description:

When a request is made by the nonprofit user, the virtual queue function above is called and the
following steps take place. When a new item is added to the list, the algorithm will iterate and
compare each item to its priority starting at the head to insert the node in the right place.
“Current” is the node that is currently being compared to the incoming node in the loop. Insert
the incoming node before the current node if it has a higher priority. If priority is less, keep
traversing. If it has the same priority, compare both item’s request numbers. If the incoming item
has a lesser number than the current, insert it before the current. If it is greater, keep traversing. If
they have the same request number, compare both items' timestamps. If the incoming item has an
earlier timestamp than the current, insert the item before the current, else keep traversing. When
the item is added to the linked list, the function ends and waits to be called again when another
item is added.

Matching Algorithm:

The matching algorithm in ZotFeeds is responsible for matching the list of nonprofit's requests to
the limited number of available food donors' requests. This matching algorithm is made easier
due to most of the work being done by the virtual queue, where the requests are already sorted by
the desired priority. The matching algorithm will simply take the head from the virtual queue and
compare the nonprofit's request to a list of food donors' requests to find the best match. The food
request queue is a linked list that will store references to Food requests made by food donors on a
first come first serve basis. Each new request made by food donors will get added to the end of
the link list, with the consideration of the food item’s expiration date. Food requests that are
expired will be popped off the list by the matching algorithm. The diagram below shows the
linear search process of the matching algorithm and the virtual queue.

Linear Search Diagram:

Matching Algorithm Pseudocode:

Take the head of Virtual Queue

If first request estimated expiration >= current date

Pop first request from Virtual Queue and set
firstRequest.matched = true

Else, take first request and pair with head

Loop:

Make X = next request

If X estimated expiration >= current date

Pop X from Virtual Queue and set X.matched = true

Else, compare paired request priority with X’s

If X priority > paired priority, pair X with head

If same priority, compare number of requests

If X requests < paired requests, pair X with head

If same number of requests, compare time/date

If X time/date < paired time stamp, pair X
with head

End Loop

Matching Algorithm Pseudocode Description:

The matching algorithm takes the head (the first node) of the virtual queue. Then it takes the first
pickup request and checks if the estimated expiration date is greater than or equal to the current
date. If the check is true, the first pickup request is removed from the virtual queue and set its
matched boolean to true. If the check is false, the algorithm pairs the virtual queue head and the
first pickup request. Then it will start a loop until it reaches the end of the pickup requests list. In
this loop, it will take the next request and for now, call it variable X. X’s expiration date will be
checked if it's greater than or equal to the current date. If true, X will be removed from the virtual
queue and set its matched boolean as true. X will then be compared to the current paired request
through priority. If X has a greater priority, then it will be matched with the head. If X has the
same priority as the paired, it will compare the number of requests. If X has fewer requests, it
will be paired with the head. If X has the same amount of requests as the paired, it will compare
their time stamps submitted. If X was submitted earlier, it will be paired with the head.

Updates to the System’s Design:

During the Design Studio 2-2 assignment, our group took notice of three main updates to the
system: Framework for the software, LinkedList data structures, and design for the matching
algorithm.

Framework:

As our team made decisions we found one area that was left undiscussed in Design Studio 2-1
was the framework that was going to be used to create the software. Our research led us to two
popular frameworks such as Flutter and React Native which both had their pros and cons in app
development for food-related applications. Collectively as a group we decided that React Native
was the better fit and framework to follow for our application because of its benefits to
specifically creating software for IOS and Android devices. We wanted to limit the application to
be strictly for mobile devices and React Native was the most optimal in accomplishing that goal
efficiently and cost-effectively. React Native also is an open-source mobile application
framework and our group aimed for ZotFeeds to be an open-source project where contributors
could help whenever they pleased. This grabbed our attention as a group because React Native
was geared towards our initial motives of how and who we wanted to create the ZotFeeds
software. The use of the React Native framework would cause the system to restrained to using
the javascript programming language which is now updated in the system design.

The Use of Linked List Data Structure:

We did not originally account for the Food Request from food donors to be in a separate array.
We wanted to have both types in a virtual queue that would match them from there, however, we
encountered problems with the design when trying to have one virtual queue to hold both types
of requests. We decided to implement the virtual queue separately, and have this unsorted linked
list to hold the food request. The reason why this is unsorted is that we can assume there will
always be a need for food, but we cannot assume that there will always be food donors.

Matching Algorithm:

In Design Studio 2-1, we decided that we will try to relieve food insecurity through an
application that will take food donations and pickup requests. We knew that these requests were
the most essential part of the software, but we did not know how we would process, fulfill and
match the donation and pickup requests. In Design Studio 2-2, we decided to create criteria for
donation requests to properly determine a fitting match. We added “Priority”, “Least Number of
Requests” and “Earliest Timestamp” sub-values to each request to give the requests their
prioritization. Next, we realized that we can use a search algorithm in part with the priority
criteria to create a matching algorithm for ZotFeeds. We decided to use a linear search algorithm
to pair up donation requests with pickup requests.

Databases:

We originally anticipated a database for all completed and active requests. However, we thought
that just storing them in a list in the user class will be more efficient. This would help the
accessing of those requests and would not need to be updated as often as the original idea would.
It also saves space since we do not need two separate databases to hold these objects.

5. Alternatives considered
○ Alternative #1: This alternative would help reduce the user’s spending by

providing a resource for coupons and offers.
○ Description of Alternative #1

■ This alternative software would aim to help reduce the amount of
money the user spends on food and groceries to help food
insecurity and availability for people in need.

■ An application that collects and stores coupons for food in a
database that the user can use to look up their groceries.

■ This application will allow the users to find coupons for food and
other groceries. The coupons will allow users to buy groceries and
food for cheap.

■ The application will actively look for coupons online and collect
them to create a database of nearby stores’ coupons.

■ The application will have a feature to add your own collected
coupons to the application database.

a. Additionally, users will have an option to add sale or
clearance events for nearby users to get notified.

b. The events must have proof, such as a picture, a description
of the event, and location.

■ An algorithm will act as a moderator to remove fake or expired
coupons and events. Users will be able to downvote events or
coupons so they get removed by this algorithm.

■ The application would potentially only use the location of the user
while using the application to customize what coupons are shown.

■ The app would open directly to a directory of coupons for stores
nearby.

■ There will be filtering and search features to allow users to make
customized searches.

○ Comparison to ZotFeeds:
■ Trying to address the same societal problem of food insecurity, this

alternative’s approach helps and eases the issue to a certain extent,
but it does not do so aggressively. This approach would not be fit
for everyone, it wouldn’t be broad enough to consider people who
need food but do not have the money to use the coupon or the
offers.

○ Alternative #2: This alternative would follow the same approach as ZotFeeds but
would have a third-party service to handle the delivery of the food from the food
donors to the nonprofits.

○ Description of Alternative #2:
■ This feature would add a Driver user (third party) to the login and

signup tabs.
■ This Driver user will get assigned to a request for pickup and

delivery from a nonprofit that lacks pickup drivers.
■ This feature would allow the driver to get the information about

the pickup request, such as pickup and delivery directions, food
type and amount, etc.

■ These Driver users will get paid through the application based on
the trip length and time.

■ The food donors and nonprofit organizations will have live
tracking on the driver to see the progress of the current transaction
taking place with estimated times of pickup and delivery.

■ The application will allow drivers to use a map feature to get
directions to pickup and delivery locations.

■ The drivers can get rated on a 1-5 scale of how reliable and fast
they get the food delivered and picked up.

○ Comparison to ZotFeeds:
■ This approach takes upon the same roles as ZotFeeds, but with a

change on how the delivery and pickup of the food would be
handled. In our original system, ZotFeeds was aimed to have the
nonprofit organizations handle the pickup and delivery of an
accepted food request. In this alternative idea, however, our team

brainstormed of having a third-party service that could handle the
times when nonprofits were unable to pick up the order. This plan
highlighted this issue and also illuminated more ideas that could be
implemented into the system. For example, a more accurate
tracking system would be implemented with up-to-date
information on the arrival of one’s order. However, we ran into
issues with the cost of these services. As a team, we decided that
our system ZotFeeds should be a system to connect these two
groups, rather than being a delivery service between the two. By
taking this approach, we could better handle the problem of food
security and reduce any additional costs for nonprofit organizations
that are already in need of support.

○ Comparison of all the alternative approaches to ZotFeeds
○ The first alternative, the Coupon application had many constraints and

failed to be feasible in many ways, some of these are that it relies on users
to operate and actively engage with the application. Another constraint is
that the application will only be able to show general coupons, these are
coupons that are not attached to one sale and can be used by multiple
users. Additionally, this application was not feasible to make, specifically,
the algorithm that finds coupons on the internet would need a high level of
coding to find a coupon. Finally, the application does not tackle the main
population affected by food insecurity. The application’s audience would
be people who have cell phones and exclude the most vulnerable to food
insecurity (the homeless and the poor). This approach compared to the
ZotFeeds approach, barely scratches the surface in trying to address the
food security problem, as it is not inclusive of its users that suffer from the
problem (homeless people and people who aren't able to afford food). The
approach we took, in contrast to this application, is directly helping the
most affected by food insecurity which also works hand in hand with
reducing food waste.

○ The second alternative approach of adding a third-service party service to
ZotFeeds would be not feasible and cumbersome to implement as it would
add the payment options of the drivers and adding them as different types
of users would add unnecessary attention to the functionality of the driver,
which would, in turn, derail from the main concern of the application with
is to match food donors to nonprofits and help reduce food insecurity.
Looking at these alternatives above, we tried to stick to our goal of
keeping this election simple and useful, focusing solely on the problem at
hand. With addressing and trying to tackle such a significant problem, we
must always put our audience (people in need of food and people with
food insecurity) first and think about what would be feasible, not only for
us as designers but also for the users and how this software would be
available for them and how it would help them if it isn't.

6. Ethical Analysis / Values Statement
○ Security

■ ZotFeeds aims to help the problem of food security within the
Irvine, California community. By connecting food donors and
nonprofit organizations, it is one small step towards bettering the
lives of others and reducing the effect food waste has on the
environment.

○ Privacy
■ ZotFeeds needs to be secure and protect confidential information

that is submitted by a user whether that be during the account
creating process or a request for food and food pickup.

○ Honest
■ ZotFeeds wants to promote honesty amongst its users including

both food donors and nonprofit organizations. By promoting
honesty it will ensure that food is being sent to legitimate
organizations and that no one organization is receiving too much
based on their submission requests.

○ Helpful
■ ZotFeeds aims to help individuals with excess food connect with

nonprofit organizations to ensure that food is not going to waste.
By connecting the two parties, there can always be a transaction of
these items having a positive outcome on the lives of those who
need food and on the environment.

○ Responsible
■ ZotFeeds takes it upon itself to connect these two parties. It attacks

the problem of the lack of communication between these groups by
connecting and allowing these parties to interact with one another
through the software.

○ Healthy
■ ZotFeeds aims to help the individuals and nonprofit organizations

within the Irvine, California community by taking a step towards
resolving the food security issues. By connecting food donors and
nonprofits, it will be able to allow for easier distribution of food to
those in need and helping their dietary needs.

○ Successful
■ ZotFeed’s main goal is to help reduce the problem of food security.

It aims to help the individuals and organizations in need so that
they can continue everyday life equally amongst society. Reducing
one more issue can help contribute to that.

○ Influential
■ ZotFeeds aims to influence and encourage more individuals and

parties to become food donors to reduce the problem of both food
waste and food security.

○ Equality

■ ZotFeeds aims to distribute food equally amongst its parties that
request food through its software. It wants to ensure that
individuals' worries about where their next meal will be are
reduced so that they can focus on the more important things in
their lives.

○ Capable
■ ZotFeeds should be accessible by any party that is willing to offer

food/resources or any nonprofit organization within the Irvine,
California community. This would allow for maximum potential to
attack the problem of food waste and food security through its
connectivity features.

○ Could this software marginalize, create a barrier for, or embody bias
against any particular segment of the population? How can we
mitigate this?

For users unfamiliar with the English language, it prevents them
from being able to read and use the current state of the software.
This issue can be mitigated by implementing different language
translations. Another issue that could create a barrier for users is if
they are unfamiliar with software that is similar to ZotFeeds. This
issue can be resolved by providing a tutorial option that can guide
and give knowledge on how to use the ZotFeeds software.

○ What are some potential ways the existence of this software may
cause harm to people or the environment? How can we mitigate this?

The current state of the desired system has no verification process
of food donor accounts. This puts the potential risk that when food
is being picked up by a nonprofit organization, it may put them in a
dangerous position. This issue can be resolved by having a
background check taken on food donors so that the software can
ensure the safety of both parties.

○ Could this software be used in a nefarious way to harm people? How
can we mitigate this?

The software can be used in a nefarious way by submitting false
requests for food pickup. This ultimately, if a nonprofit
organization is matched to the false donor, can lead to a waste of
time, effort, and money for the organization. This issue can be
mitigated by again including a background check on individuals
who want to become food donors and also requiring the food donor
to upload an image of the food with the current date marked in the
photo.

